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Abstract. This paper outlines the approach developed together with the Radio 
Network Strategy & Design Department of a large telecom operator in order to 
forecast the Air-Interface load in their 3G network, which is used for planning 
network upgrades and budgeting purposes. It is based on large scale intelligent 
data analysis and modeling at the level of thousands of individual radio cells re-
sulting in 100,000 models. It has been embedded into a scenario simulation 
framework that is used by end users not experienced in data mining for studying 
and simulating the behavior of this complex networked system. 
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1 Introduction 

This paper reports on a deployed data mining application that has been developed by 
one of the largest European telecom operators and has been in continuous use ever 
since. In order to accommodate the continuing strong increase of mobile internet traf-
fic, the operator’s Radio Network Department has to continuously monitor and up-
grade the 3G Radio Access Network. This requires an Air-interface Load forecast for 
every radio cell in the network. However, such a detailed forecast was not readily 
available. Furthermore, there is a need to simulate different scenarios for different 
parts of the network. Given the complexity of the problem, the dimension of the net-
work and the repetitiveness of the task, a manual approach is out of the question. 

In this paper we present a fully automated approach that generates multi-variate li-
near regression models on a grand scale, using primarily open source tools. The key 
business value of this research is that it solves a very complex and high impact busi-
ness problem that cannot be approached by using simpler planning approaches. The 
exact return is confidential, but cellular network infrastructure forms a major part of 
an operator investment budget, and this is a key system for tactical and strategic net-
work investment decisions. In the group where this operating company belongs, up to 
50% of wireless CAPEX investments are going into the radio access. For reference, 
operators invest more than 20 billion USD into cellular network infrastructure world-
wide. Our methodology is first and foremost intended to ensure that capacity is added 
in time and at the right place, thus avoiding inefficient investments and poor customer 
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experience due to traffic congestion, which can ultimately lead to churn. The system 
has been rolled out to full production use. None of the other operator companies in the 
telecommunications group uses a similar fine grained approach. 

Whilst the core intelligent data analysis algorithms used are not novel, we apply 
these on a large scale by modeling individual radio cells across a variety of dimen-
sions (section 3 motivates why we model at cell level). This has also been embedded 
into a simulation framework targeted at non-data miners in tools they are familiar 
with to enable them to run low level simulation scenarios. Hence, the goal is to pro-
vide a case example of an embedded, deployed intelligent data analysis system, deal-
ing with real world aspects such as scale and having major business impact. 

As discussed, the technical novelty is not determined by the complexity of the base 
estimators used. We use simple linear regression models as data inspection has shown 
that the behavior to be predicted is primarily linear, and experiments confirmed that 
complex algorithms actually performed worse given the high variance associated with 
these models. This is not uncommon in real world data mining problems [1]. What 
makes this problem out of the ordinary is the massive number of models. For each of 
the 20,000 cells in the network we create five models to predict different kinds of 
outcomes, resulting in a total of 100,000 models. Model parameters are estimated 
using ten-fold cross validation, which increases the number of models estimated to 
over 1 million. This process is repeated on a regular basis, given that the customer 
base and its behavior, as well as the cellular network itself change constantly. Finally, 
we do not just deploy the forecasted loads. The underlying regression formulas are 
provided by the data miners to the end user analysts as simple spreadsheets, which 
enables them to tune various simulation and forecasting scenarios without further 
involvement from the data miners. We think this approach can easily be replicated 
and applied to problems from other industries which require similar predictive models 
and simulation of networked systems on a large scale, such as for instance sensor 
networks, retail outlet planning and supply chain logistics.  

The rest of the paper is structured as follows. Section 2 describes the load parame-
ters. Section 3 discusses the complex nature of network load and how to approximate 
it, including a motivation for modeling at the granular cell level. Section 4 describes 
the construction of the load formulas and the forecasting of the future load of the net-
work using simulation based on these formulas. Limitations and future work are dis-
cussed in section 5. Finally, we present our conclusions in section 6. 

2 Defining the Air-Interface Load Parameters 

The communication between a network cell and a mobile device is separated into 
downlink communication- directed from the cell to the mobile device and uplink 
communication- directed from the mobile device to the cell. Therefore, the Air-
interface load for a cell consists of the Downlink Load (DL) and Uplink Load (UL). 
When measuring the actual Air-Interface load typically only the maximum of the UL 
and DL values is taken. Multiple measures of both DL and UL can be devised. A cell 
is considered to be in overload if the load is above a certain threshold. When a cell is 
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in overload, it cannot serve additional customers that demand its resources. Obvious-
ly, all cells in overload require an adequate upgrade. 

Most of the literature on telecom network is related to network optimization or 
load control rather than load prediction [2, 3, 4, 5]. Therefore, there was no previous 
knowledge on which of the measures of either Downlink or Uplink Load would be 
possible to predict with the least error, so several measurements of these were chosen. 

We used a number of measures to characterize uplink load. Firstly, the Count of 
RAB (Radio Access Bearer) Releases Due To Interference was chosen; a RAB is a 
cell resource which is necessary to be assigned to the mobile subscriber/device in 
order for any voice/data transaction to be possible. Normally, it is released after it is 
no longer necessary, unless there were circumstances (e.g. interference from other 
users or cells) which caused it to be dropped [2]. Secondly, we used the Average 
Noise Rise (ANR), measured per hour in dBm (Decibels per milliwatt), which is the 
difference between the Uplink power received in a given time when a number of users 
consume cell resources, and the Uplink power of the same cell when it is not serving 
any users at all [3]. Thirdly, we chose the Average Noise Rise on Channels Dedicated 
to Release 99 Capable Devices (refers to lower data transfer speed up to 384 Kbps). 
Two additional uplink measures were considered: Count of RAB (Radio Access  
Bearer) Setup Failures and Count of RRC (Radio Resource Control) Setup Failures. 
These measurements were discarded at later stages of the process due to the very low 
number of models that could be generated because of too many zero-values. 

The parameters used as measures for downlink load were the following. Firstly, we 
used Percentage of Consumed Downlink Power (CDP), similar to Downlink Noise 
Rise [4]. Downlink power is a finite cell resource and it amounts to 20W. Each mo-
bile device/user gets a portion of this, which is proportional to the bandwidth they 
require. In an overload situation there is no more power to be distributed. The other 
downlink load measure was the Count of “No Code Available” Situations (NCA) [5]. 
Each cell has 256 codes that can be assigned to a mobile device for a voice call or a 
data session. The higher the downlink bandwidth required, the higher the number of 
codes will be assigned.  After all the codes have been assigned, the next devices that 
requests a code from the cell, gets a “no code available” message and cannot use the 
cell resources.  

As input parameters we used different measures from the Nokia Data Warehouse 
[6], a tool that is used in telecom operators to monitor Radio Network Performance. 
Even though we included input parameters related to voice services, most of the input 
parameters are related to consumption of Data Services, because they require more of 
the cell resources. These include the following: Average Voice Call Users, Average 
Release 99 Uplink users, Average Release 99 Downlink users,  Average High Speed 
Uplink Packet Access (HSUPA) users, Average High Speed Downlink Packet Access  
(HSDPA) users, Maximum HSUPA users, Maximum HSDPA users, Total RRC at-
tempts, Total Active RABs, Total Voice Call RAB Attempts, Total Data Session 
RAB Attempts, Average Downlink Throughput, Average Uplink Throughput, Aver-
age Soft Handover Overhead Area (measures the intersection of coverage of the  
particular cell with other cells), Average Proportion of Voice Traffic originated in  
that cell (as opposed to traffic originated in other cells and handed over to that cell), 
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Average Proportion of Data Traffic originated in that cell. Forecasts for future values 
of the input parameters were available at the operator. 

Both the input and the output parameters were taken on per cell per hour level. 

3 Approximating and Predicting the Air-Interface Load 

Most of the literature on load forecasting is related to electrical networks. A good 
overview is presented in [7]. Various methods have been deployed for this purpose: 
regression models, time series, neural networks, expert systems, fuzzy logic etc. The 
authors state a need for load forecasts for sub-areas (load pockets) in cases when the 
input parameters are substantially different from the average, which is a case similar 
to different cells in a mobile telecom network. 

Related to mobile telecommunications, data traffic load (which is different than air 
interface load) focusing on a highly aggregated link has been forecasted in [8], com-
paring time series (moving averages and dynamic harmonic regression) with linear 
and exponential regression. Also, Support Vector Regression was used by [9] for link 
load prediction in fixed line telecommunications. 

In order to forecast the future load for each cell in the network, it is necessary to 
understand the relationship between the input parameters (causing the load situation) 
and the current load. The input parameters in case of the Air Interface load are all 
parameters which can be made accountable for the load situation in the cell (Section 
2). Therefore, the load parameter (output) can be expressed as L=f(x1, x2,…, xn). Ideal-
ly, the load of each cell x in a given time could be expressed as the sum of all users 
consuming resources of that cell at the particular time multiplied by the amount of 
resources they use plus the interference between that cell and all the other cells in the 
network (in practice limited to the neighboring cells): 

 L(x) = ∑ ∑ ௜ݎ݁ݏܷ כ ܿݎݑ݋ݏܴ݁ ௝݁௡௝ୀଵ ൅௠௜ୀ଴ ∑ ,ݔሺ݁ܿ݊݁ݎ݂݁ݎ݁ݐ݊݅ ሻ௭௬ୀଵݕ  (1) 

where m is the count of users that are using the resources of cell x, n is the count of 
resources of the cell x, z is count of all cells in the network and interference(x,y) is the 
interference measured between cell x and y. 

Unfortunately, there was no tool that would provide such a detailed overview. In 
order to approximate the load function, we recorded the five different load parameters 
(outputs) and 16 input parameters described in section 2, on an hourly basis during 6 
weeks. This provided approximately 1,000 instances for each cell to build a predictive 
model, or 20,000,000 instances in total. 

One of the choices to be made was whether a distinct formula for every cell shall 
be built or – alternatively – a common formula valid for all cells should be used. The 
approach where a model is created for each cell was chosen, due to the network ex-
perts’ conviction that each cell is different, and a unified approach simply would not 
work, because some of the parameters influencing the load of each cell were immea-
surable and unpredictable.  
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Fig. 1. Actual Downlink Load vs. Linear approximation 

Next, the domain experts were intrinsically interested in being able to model cells 
that actually do not behave like other cells, especially when these are highly loaded. 
Furthermore, there would be a challenge in normalizing with respect to the varying 
capacity of the cells, i.e. what where the cell sized to handle. Finally, we hypothesized 
that not just model parameters could differ by cell, but also the optimal selection of 
features, similar to the load pockets explained by [7].  

The choice of linear regression [10] was made due to several reasons. First of all, 
even though the distribution of the values of each of the load measures we are trying 
to predict vary between close to linear and close to exponential, we are only interested 
in the higher values of the load curve, and this can be approximated quite well with 
linear regression, as shown on Figure 1. For this purpose, before constructing the 
regression formulas, we remove all zero instances. Furthermore, linear regression is a 
very fast algorithm compared to other methods, which is very useful when it is neces-
sary to develop a large number of models in a short time. Even though it is imaginable 
that better results might be achieved by using non-linear regression, regression trees, 
or other algorithms, this might not be necessary (Figure 1). Also, simple low variance 
methods such as linear regression frequently perform much better in practice than 
more complicated algorithms, which can very often over fit the data (e.g. high va-
riance algorithms such as neural networks). In other words, in real world problems 
variance is typically a more important problem than bias when it comes to data prepa-
ration and algorithm selection [1]. Trials on a smaller sample were already made with 
regression trees, but apart from the visibly increased time consumption, the accuracy 
did not improve. On the contrary, in some instances it decreased. 

Last but not least, linear regression is easy to implement, easy to explain and its re-
sults and models are easy to export for other use. Exporting the models to Excel was 
of crucial value, as analysts would use them in order to predict the future load of each 
cell, by scaling the input parameters, based on internal forecasting models. In other 
words, this allows non data miners to simulate future network load based on changes 
in the various type of network traffic, using simple tools they are familiar with. 

4 Approach Description and Results 

In this section we will describe how the models are being generated and put to work. 
This includes the tools that were used, a detailed description of the approach, the re-
sults of this mass modeling process and the process of forecasting the future load. 
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4.1 Tools 

The tools used in this research are either open source, or can be found in the IT port-
folio of any telecom operator. These are the following: 

Nokia Data Warehouse [6] was used for data collection for both the input and the 
output parameters. This software tool was already a part of the Network/IT infrastruc-
ture of the operator. It contains technical parameters related to the mobile network 
performance. The most important feature of this tool for our research was that it con-
tained hourly aggregates of all the input and output parameters we used in our research 
(Section 2). Obviously, any other tool that collects data about network performance 
could have been used. This is the only domain specific tool from our process. 

Load Prediction and Simulation Data Mart. This is an Oracle Database 10g- 64 bit 
v10.2.0.5.0 [11] used for all our task specific data preparation and manipulation. 

Due to the fact that the necessary input and output parameters were stored at dif-
ferent tables in the Nokia Data Warehouse, we needed a separate database where we 
could manipulate the data easier (e.g. merge tables, create indexes, and build the final 
flat table). This reduced the duration of the data collection and data preparation 
process from two weeks to 1 day by productizing data collection. Because we are 
rebuilding and rescoring models on a continuous and automated basis, this was a key 
improvement. Any other database platform (commercial or open source) could have 
been used. We opted for Oracle based on license availability. 

WEKA 3.6.4 x64, an open source data mining platform [12], was used for building 
the linear regression formulas and validating them. Of course, any other tool capable 
of deriving linear regression can also be used for this purpose. That said, this shows 
that even a research focused open source tool like WEKA can be used in critical 
commercial settings, at high complexity (20.000 cells, 5 models each, around 1000 
instances each). 

Strawberry Perl for Windows v5.12.3 [13] is an open source scripting language that 
we used in order to create the script that is the core of this approach. Our script 
creates WEKA input files by querying the Oracle database, generates the regression 
models by executing calls to WEKA, and stores the regression formulas and the 
cross-validation outputs (Correlation Coefficient, Mean Absolute Error, Root Mean 
Squared Error, Relative Absolute Error, Root Relative Squared Error, and Total 
Number of Instances used to build the model) in csv files. 

MS Excel 2010 [14] – part of MS Office 2010, was used to predict the future load of 
cells, using the regression formulas created by WEKA and extrapolations of the input 
values using a internet traffic model scaling factors based on handset/internet usage 
developments (internal to the operator). 

4.2 Process Description 

A graph of how our approach uses these tools to derive and store the regression mo-
dels is presented on Figure 2. In the core of our approach is a Perl [15] script that 
automated the derivation of the regression formulas for each cell. This script executed 
calls to WEKA and queries to the Oracle Database. It works in the following manner: 
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Get list of cells from the database; 
for each cell 
Run a query on the database to isolate only the data 
related to that cell (all the input and the 5 output 
parameters); 

 Make separate files for each of the 5 load parameters;  
 For each of the 5 load parameters 
Filter out all instances where the load is 0; 

Select only the relevant variables for the regression 
formula of that cell, using a wrapper approach; 

  Build the linear regression model and store it; 
  Validate the model- Use 10-fold cross-validation;  

Store the formula, the number of instances used to 
build it, the correlation between the predicted and 
actual value for load, the Mean Absolute Error (MAE) 
and the Root Mean Square Error (RMSE) as reported 
from the cross-validation; 

While generating the models/regression formulae, we used a wrapper [16] approach. 
Wrapper approaches automatically select the best variables for predicting the out-
come, taking into account the algorithm to be used, which in our case is linear regres-
sion. They do not necessarily perform better or worse than filter approaches [17]. Our 
motivation to use the wrapper approach was to avoid human interaction with the 
model building process as much as possible, which obviously makes the process 
much faster.   

It is worthwhile mentioning that the optimal feature and linear regression model se-
lection were performed using 10-fold cross validation [3]. This was done in order to 
balance between cells with large sample of non-zero instances and cells with a smaller 
sample. The reported correlation coefficient, MAE and RMSE are averages from the 
10 repetitions. Using 10-fold cross validation already provides a good estimate of the 
accuracies of these formulas. Of course, we intend to test them on a completely new 
dataset, not only to confirm the accuracies achieved, but also to find out when is a 
good time to update the model. We expect that updates should be necessary every few 
months, because of the reconfiguration of the network, additions of new cells and 
upgrades to the existing ones. 

 

Fig. 2. Communication Graph of the Tools used 
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4.3 Results of the Modeling Process 

Using this process we were able to run 100,000 (5 outputs for 20,000 cells) regres-
sions in less than 1 week, by just one click. This did not result in 100,000 models, 
because in some cases it was impossible to derive a formula due to the large number 
of instances that were filtered out for zero load. But, in order to measure the load of a 
cell, it is sufficient that a model is generated for at least one output variable. Cases of 
cells where it was not possible to generate a model for any of the variables were rare. 
Furthermore, cells that do not show any load by the means of the five output va-
riables, are not of interest for our problem situation. For practical purposes, we will 
only present the modeling results for two of the five output variables we used to de-
scribe the air interface load in section 2. We chose one Uplink Load measure- Count 
of RAB Releases due to Interference-RRI, presented in Table 1, and one Downlink 
Load measure- Count of No Code Available- NCA, presented in Table 2.  

Both Table 1 and 2 have the same structure. In the first column Bands of Averages 
for the respective output variables RRI and NCA are given. The second column con-
tains the count of cells that falls into this band. The third column presents the average 
count of non-zero instance (NZI) in each band. 

Table 1. Regression Modeling Results for Count of RAB Releases due to Interference (RRI) 

Count of RAB Re-
leases due to Inter-

ference (RRI) 
Count 

of Cells 

Avg 
Count of 

NZI 

Avg 
nonzero 
RRI 

Avg 
CC 

 
Models Built Vs 

Number of Cells 
RRI<=1 8373         
1<RRI<2 7344 89.4 1.3 0.141 0.582 
2<=RRI<3 1359 229.4 2.4 0.545 0.769 
3<=RRI<5 972 296.2 3.8 0.658 0.829 
5<=RRI<10 780 365.0 7.0 0.751 0.881 
10<=RRI<20 503 407.6 14.0 0.810 0.905 
RRI>=20 538 431.3 56.8 0.873 0.920 

Table 2. Regression Modeling Results for Count of No Code Available (NCA) 

Count of No 
Code Available 

(NCA) 
Count 

of Cells 

Avg 
Count of 

NZI 

Avg 
nonzero 

NCA 
Avg 
CC 

Models Built Vs 
Number of Cells 

NCA<=1 682         
1<NCA<2 792 130.5 1.6 0.454 0.775 
2<=NCA<5 2229 331.5 3.3 0.635 0.971 
5<=NCA<10 2321 500.5 7.3 0.773 0.994 
10<=NCA<20 3420 597.2 14.7 0.836 0.994 
20<=NCA<30 2706 681.3 24.9 0.862 0.994 
30<=NCA<50 3858 732.0 39.0 0.861 0.998 
50<=NCA<100 3063 758.1 67.8 0.872 0.996 
NCA>=100 798 760.2 208.7 0.790 0.992 
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In other words, it presents the number of instances used to build the regression, be-
cause we only took non-zero output values into account. The fourth column, perhaps 
redundant, presents the average of the variable in that band. The fifth column presents 
the average Correlation Coefficient (CC) between the predicted and actual variables 
in the particular band. These Correlation Coefficients are the result of the 10-fold 
cross validation. The last column presents the ratio between the number of formulas 
that were generated and the total count of cells in each band. Namely, for certain cells 
it was not possible to build the regression because of a very low number of non-zero 
instances. 

The results can also be evaluated by using two criteria: The Correlation Coefficient 
and The Ratio of The Models Built (the last two columns in Tables 1 and 2). Obvious-
ly, the Correlation Coefficient in both these cases (RRI and NCA) grows alongside 
the number of instances, which is to be expected. But, because of the choice we made 
at the beginning of the research, to focus on the higher levels of load and eliminate the 
zero values, the Correlation Coefficient between actual and predicted values also 
grows as the output variable value is higher. The case is similar with the Ratio of the 
Number of Formulas built. The difference is more evident in the case of RRI (Table 
1), because this is an event that occurs less frequently than NCA. The number of for-
mulas here is also lower, especially in cases with low RRI levels. But, as mentioned 
before, we are not interested in these cases. 

4.4 Forecasting Future Load 

Once the load formulas have been derived it is possible to forecast the future load 
situation if the changes in the describing parameters are known. These changes of the 
input parameters are described by means of scaling factors. The scaling factors are 
calculated by using a traffic forecast model developed by the operator (out of scope of 
this paper).  

This is done in the following way: 

 For each output variable 
  For each cell 

Select the top 100 instances of the output variable 
and its corresponding values for the input varia-
ble;  

   Make averages of these input variables; 
Scale the input variables up or down, according to 
scaling factors developed by a traffic model; 
Feed the scaled values of the input parameters into 
the regression formula;  
If resulting value > critical threshold then cell 
should be upgraded; 

This part of the process is performed in a tool as simple as MS Excel. This was a  
key driver for the business success of the solution. In our experience the importance 
of the Deployment step in the data mining process is generally underestimated. By 
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providing not just the scores but also the underlying models in a format and tool that 
was immediately usable and tunable to end users who are not data miners, the solution 
was readily accepted and also used in new ways not necessarily intended by the data 
miners, for instance detailed simulation scenarios. 

We mentioned in Section 2 that the Air interface load is calculated as a maximum 
of Uplink Load and Downlink Load. This means that a cell will be upgraded if it is in 
overload on either the Uplink or the Downlink. In terms of our approach, a cell is 
upgraded if any of the five output variables, used as measures of Uplink or Downlink 
load, are above a critical value. 

5 Limitations and Future Work 

The regression formulas developed by this approach can be used on a long term basis 
only if the mobile network stays the same (is frozen) over a longer period. But, this is 
not the case. The cellular network is a system of very complex dynamics. The many 
changes that occur, such as hardware and software updates, network reconfigurations 
and optimizations, as well as network upgrades and roll-out of new cells cannot be 
taken into account in advance. It is necessary to collect a new dataset and rebuild the 
regression formulas, in order to incorporate all these changes into the model. This is 
why the process described in this paper is scheduled for execution every 3-4 months. 

Further evaluation of the quality of the derived load formulas of course also in-
volves the comparison of the predicted load with the actually measured load in  
the future. It should however be noted that there a lot of factors impeding a direct 
comparison. As noted above, all changes to the settings of a cell within the forecast-
ing timeframe affect the load formula, which means that after such changes the de-
rived formula is - at least to some degree - no longer correct. For this reason it will  
be challenging to really quantify the accuracy of the predictive model. Developing a 
fair method of evaluation, which would incorporate the network changes, would be 
beneficial. In terms of the core algorithms, we do want to keep the benefit of using a 
simple, fast and robust low variance approach such as linear regression. 

However, we do plan to explore a methodology that would allow us to combine a 
global network model with local models for each cell, for instance multitask or trans-
fer learning [18]. In principle, we have almost infinite data available for most cells, so 
local models cannot be improved by a global model. Nevertheless, there could be 
exception for a non select small number of cells. Last but not least, a clustering ap-
proach could be devised to group cells with similar formulas or levels of load, thereby 
generating new knowledge for the telecom domain experts. 

6 Conclusions 

In this paper we presented a very simple yet effective approach of applying data min-
ing in commercial surroundings. Unfortunately, data mining is still seen as a black 
box in many industries, telecom not excluded. Even though some data mining activi-
ties are taken, typically in the Marketing/Customer Retention field, there is a myriad 



 Mass Scale Modeling and Simulation of the Air-Interface Load 311 

of other possibilities in business where data mining can be applied. In our opinion, it 
is better to start with simple methods, such as regression, because it is easier to under-
stand them. Once these simple approaches gain acceptance, and familiarize the indus-
tries with data mining, opportunities to apply more advanced techniques will arise. 

In our result section we show that it is easier to accomplish a target, if one is fo-
cused on it. Namely, with our approach we wanted to target cells where some load 
(non-zero load) occurs, in order to predict the part that really matters more correctly: 
the high end part of the load curve (the cells in overload). In other words, as the  
network load grows, so does the quality of the model’s predictions. We willingly 
sacrificed the models’ performances within the lower loaded cells, because they are of 
no interest. 

Next, one of the key values of the approach is that a large number of regression 
models (close to 100,000) are developed in a very short period of time with minimum 
human interaction. In order to do this, we deployed a simple algorithm such as linear 
regression, motivated by its speed and other benefits explained earlier, a wrapper 
feature selection, in order to avoid human interaction, and 10-fold cross validation 
which makes the models statistically sound. Manually, this task would be impossible. 
Obviously, the possibility to generate these formulas was crucial to the operator.  

Another large benefit of our approach is that after the models have been generated, 
they are exported into Excel sheets, which allows a team of radio network analysts, 
which are not data miners, to use these formulas for forecasting the future network 
load. This allows them to simulate multiple traffic scenarios by scaling the current 
input parameters. These scenarios include evaluations of network investments neces-
sary to accommodate localized user growth due to targeted marketing campaigns or 
more extreme, adding a new wholesale client- or an MVNO (Mobile Virtual Network 
Operator).  

Typically, planning network upgrades is a reactive process. Our approach makes it 
proactive, which was acknowledged by the operator, who has fully integrated our 
approach into its network upgrade planning and budgeting activities. Of course, due 
to the fast pace network changes, the formulas need to be upgraded every 3-4 months, 
but this is also scheduled as a part of a standard process. Due to confidentiality, we 
cannot disclose the exact return of this project, but given that the network is the key 
resource of an operator, the investments into its upgrades are quite sizeable. To our 
knowledge, this is the first time a telecom operator has applied data mining in order to 
create a proactive network upgrade management process. This allows the operator to 
manage network performance better and avoid extreme congestion situations, which 
can result in degraded customer experience and loss of reputation for the operator. As 
mentioned at the beginning, the research was performed at a large telecom operator 
with branches in many European countries. At the moment, our research is deployed 
in only one of the countries where this operator is present, but efforts are made to 
replicate it in the other branches as well.  

Perhaps one of the most interesting aspects of this approach is the extremely low 
cost. Given that we used the existing IT infrastructure (Server, Nokia Data Ware-
house, Oracle, Excel) combined with open source tools (WEKA, Perl), the only cost 
that incurred are the 1 week Processing Time Cost (of the Server) and the labor  
cost of the employees in this project. Also, the Oracle Database that we used can be 
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replaced with a less expensive or free database alternative in order to further reduce 
the cost, in case the potential user of our approach does not have an Oracle License. 

Last but not least, we would like to point out the possibility of applying our  
research onto domains other than telecom. This approach would be applicable to any 
other industry where large scale regression models are necessary. This can be accom-
plished simply be replacing the data source, in this case Nokia Data Warehouse, with 
a data source suitable for the industry that would like to apply our research. 
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